FOXO transcription factors enforce cell cycle checkpoints and promote survival of hematopoietic cells after DNA damage.

نویسندگان

  • Hong Lei
  • Frederick W Quelle
چکیده

The PI3K/AKT signaling pathway contributes to cell cycle progression of cytokine-dependent hematopoietic cells under normal conditions, and it is absolutely required to override DNA damage-induced cell cycle arrest checkpoints in these cells. Phosphatidylinositol-3-kinase (PI3K)/AKT activity also correlates with Cdk2 activity in hematopoietic cells, suggesting that Cdk2 activation may be a relevant end point for this signaling pathway. However, mediators downstream of AKT in this pathway have not been defined. The forkhead transcription factor O (FOXO) family are negatively regulated by AKT-dependent phosphorylation and are known regulators of genes affecting cell cycle progression. We show that enhanced FOXO activity replicates the effect of PI3K inhibitors in enforcing G(1) and G(2) phase arrest after DNA damage. Conversely, knockdown of endogenous FOXO proteins increased Cdk2 activity and overrode DNA damage checkpoints in cells lacking PI3K activity. Moreover, loss of FOXO activity caused an increase in sensitivity to cisplatin-induced cell death, which was associated with failure to arrest cell cycle progression in the face of DNA damage caused by this chemotherapeutic agent. These cell cycle arrests were dependent on p27 expression when mediated by FOXO3a alone, but also involve p27-independent mechanisms when promoted by endogenous FOXO proteins. Together, these observations show that FOXO proteins enforce DNA damage-induced cell cycle arrest in hematopoietic cells. Inhibition of FOXO activity by cytokine-induced PI3K/AKT signaling is sufficient to override these DNA damage-induced cell cycle checkpoints, but may negatively impact hematopoietic cell viability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CDK2-dependent phosphorylation of FOXO1 as an apoptotic response to DNA damage.

The function of cyclin-dependent kinase 2 (CDK2) is often abolished after DNA damage. The inhibition of CDK2 plays a central role in DNA damage-induced cell cycle arrest and DNA repair. However, whether CDK2 also influences the survival of cells under genotoxic stress is unknown. Forkhead box O (FOXO) transcription factors are emerging as key regulators of cell survival. CDK2 specifically phosp...

متن کامل

The Role of chk2 in Response to DNA Damage in Cancer Cells

Accumulation of gene changes and chromosomal instability in response to cellular DNA damage lead to cancer. DNA damage induces cell cycle checkpoints pathways. Checkpoints regulate DNA replication and cell cycle progression, chromatin restructuring, and apoptosis. Checkpoint kinase 2 (chk2) is activated in response to DNA lesions. ATM phosphorylate chk2. The activated Chk2 kinase can phosphoryl...

متن کامل

DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein.

The signaling pathway from phosphoinositide 3-kinase to the protein kinase Akt controls organismal life-span in invertebrates and cell survival and proliferation in mammals by inhibiting the activity of members of the FOXO family of transcription factors. We show that mammalian FOXO3a also functions at the G2 to M checkpoint in the cell cycle and triggers the repair of damaged DNA. By gene arra...

متن کامل

AKT-1 Regulates DNA-Damage-Induced Germline Apoptosis in C. elegans

The cellular response to genotoxic stress involves the integration of multiple prosurvival and proapoptotic signals that dictate whether a cell lives or dies. In mammals, AKT/PKB regulates cell survival by modulating the activity of several apoptotic proteins, including p53. In Caenorhabditis elegans, akt-1 and akt-2 regulate development in response to environmental cues by controlling the FOXO...

متن کامل

FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system.

The forkhead O (FoxO) family of transcription factors participates in diverse physiologic processes, including induction of cell-cycle arrest, stress resistance, differentiation, apoptosis, and metabolism. Several recent studies indicate that FoxO-dependent signaling is required for long-term regenerative potential of the hematopoietic stem cell (HSC) compartment through regulation of HSC respo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer research : MCR

دوره 7 8  شماره 

صفحات  -

تاریخ انتشار 2009